Raftul cu initiativa Book Archive

Machine Theory

Constraint Integer Programming by TobiasAchterberg

By TobiasAchterberg

Show description

Read or Download Constraint Integer Programming PDF

Best machine theory books

Digital and Discrete Geometry: Theory and Algorithms

This e-book presents entire insurance of the fashionable equipment for geometric difficulties within the computing sciences. It additionally covers concurrent issues in info sciences together with geometric processing, manifold studying, Google seek, cloud information, and R-tree for instant networks and BigData. the writer investigates electronic geometry and its comparable positive tools in discrete geometry, supplying certain equipment and algorithms.

Artificial Intelligence and Symbolic Computation: 12th International Conference, AISC 2014, Seville, Spain, December 11-13, 2014. Proceedings

This ebook constitutes the refereed lawsuits of the twelfth foreign convention on synthetic Intelligence and Symbolic Computation, AISC 2014, held in Seville, Spain, in December 2014. The 15 complete papers awarded including 2 invited papers have been rigorously reviewed and chosen from 22 submissions.

Statistical Language and Speech Processing: Third International Conference, SLSP 2015, Budapest, Hungary, November 24-26, 2015, Proceedings

This ebook constitutes the refereed lawsuits of the 3rd overseas convention on Statistical Language and Speech Processing, SLSP 2015, held in Budapest, Hungary, in November 2015. The 26 complete papers awarded including invited talks have been conscientiously reviewed and chosen from seventy one submissions.

Additional resources for Constraint Integer Programming

Example text

Xjk ¸ Djri = [lji , uji ]¸ lji , uji ∈ ÒØ × Ø × Ø ÓÒ ÔÖÓ Ð Ñ ËÈ = (C, D) Û Ø ∈ ʸ ÓÖ Dji = {lji , . . , uji }¸ lji , uji ∈ ¸ Ð × Dji = [lji , uji ]¸ lji , uji Ò¸ C × ÐÐ ÓÙÒ ÓÒ× ×Ø ÒØ ∀i ∈ {1, . . , k} ∀xji ∈ {lji , uji } ∃x⋆ ∈ Djr1 × . . × Djrk : x⋆ji = xji ∧ C(x⋆ ) = 1. ËÈ Û Ø ÓÑ ÓÒ×ØÖ ÆÓØ Ø ÓÒ× ×Ø ÒØ Ø ÒØ× Ò ÓÒ Ö Ð¹Ú ÐÙ ÓÙÒ ÓÒ× ×Ø ÒØ Ò× × ÐÐ ÓÙÒ ÓÒ× ×Ø Ò
Ý × Û ËÈ Ò Û Ø ÓÒ× ×Ø Òغ ÇÒ Ø ÓØ ÓÒ× ×Ø Òظ ÓÐÐÓÛ Ò × Ø Ü ÑÔÐ ¾º º Ä Ø ÐÐ Ó Ö ÓÒ×ØÖ Ò ¸Ø Ö Ø ÒØ× Ö Ü ÑÔÐ Ö Ú Ö Ð × Ø× ÓÒ×ØÖ Ò ÒØ× Ú Ö Ö Ð × Û Ø ÓÙÒ Ò ÒØ ÖÚ Ð ÓÒ× ×Ø Ò
Ý Ö ÓÙÒ Ò ÓÒ Ö Ð¹Ú ÐÙ ÓÒ× ×Ø ÒØ Ú ÖÝ ÒØ ÖÚ Ð Ú Ö ËÈ× Ø ÒØ ÖÚ Ð ÓÒ× ×Ø Òغ Ø Ð × × Ö ÓÙÒ ÒÓØ ÒØ ÖÚ Ð ÐÐÙ×ØÖ Ø × C : [0, 1] × [0, 1] × [0, 1] → {0, 1} Ø Ð Ò Ö ÓÒ×ØÖ ÒØ C(x) = 1 ⇔ 2x1 + 2x2 + 2x3 = 3.

Xjk ¸ Djri = [lji , uji ]¸ lji , uji ∈ ÒØ × Ø × Ø ÓÒ ÔÖÓ Ð Ñ ËÈ = (C, D) Û Ø ∈ ʸ ÓÖ Dji = {lji , . . , uji }¸ lji , uji ∈ ¸ Ð × Dji = [lji , uji ]¸ lji , uji Ò¸ C × ÐÐ ÓÙÒ ÓÒ× ×Ø ÒØ ∀i ∈ {1, . . , k} ∀xji ∈ {lji , uji } ∃x⋆ ∈ Djr1 × . . × Djrk : x⋆ji = xji ∧ C(x⋆ ) = 1. ËÈ Û Ø ÓÑ ÓÒ×ØÖ ÆÓØ Ø ÓÒ× ×Ø ÒØ Ø ÒØ× Ò ÓÒ Ö Ð¹Ú ÐÙ ÓÙÒ ÓÒ× ×Ø ÒØ Ò× × ÐÐ ÓÙÒ ÓÒ× ×Ø Ò
Ý × Û ËÈ Ò Û Ø ÓÒ× ×Ø Òغ ÇÒ Ø ÓØ ÓÒ× ×Ø Òظ ÓÐÐÓÛ Ò × Ø Ü ÑÔÐ ¾º º Ä Ø ÐÐ Ó Ö ÓÒ×ØÖ Ò ¸Ø Ö Ø ÒØ× Ö Ü ÑÔÐ Ö Ú Ö Ð × Ø× ÓÒ×ØÖ Ò ÒØ× Ú Ö Ö Ð × Û Ø ÓÙÒ Ò ÒØ ÖÚ Ð ÓÒ× ×Ø Ò
Ý Ö ÓÙÒ Ò ÓÒ Ö Ð¹Ú ÐÙ ÓÒ× ×Ø ÒØ Ú ÖÝ ÒØ ÖÚ Ð Ú Ö ËÈ× Ø ÒØ ÖÚ Ð ÓÒ× ×Ø Òغ Ø Ð × × Ö ÓÙÒ ÒÓØ ÒØ ÖÚ Ð ÐÐÙ×ØÖ Ø × C : [0, 1] × [0, 1] × [0, 1] → {0, 1} Ø Ð Ò Ö ÓÒ×ØÖ ÒØ C(x) = 1 ⇔ 2x1 + 2x2 + 2x3 = 3.

Djrk → {0, 1}, ÓÒ×ØÖ ÒØ Ê¸ i = 1, . . , k¸ Û ÒØ ÖÚ Ð ÓÑ i = 1, . . , k º Ò× Ì Ò ÓÒ Ö Ð¹Ú ÐÙ × Ô ÖØ Ó Ú Ö ÓÒ×ØÖ xj1 , . . , xjk ¸ Djri = [lji , uji ]¸ lji , uji ∈ ÒØ × Ø × Ø ÓÒ ÔÖÓ Ð Ñ ËÈ = (C, D) Û Ø ∈ ʸ ÓÖ Dji = {lji , . . , uji }¸ lji , uji ∈ ¸ Ð × Dji = [lji , uji ]¸ lji , uji Ò¸ C × ÐÐ ÓÙÒ ÓÒ× ×Ø ÒØ ∀i ∈ {1, . . , k} ∀xji ∈ {lji , uji } ∃x⋆ ∈ Djr1 × . . × Djrk : x⋆ji = xji ∧ C(x⋆ ) = 1. ËÈ Û Ø ÓÑ ÓÒ×ØÖ ÆÓØ Ø ÓÒ× ×Ø ÒØ Ø ÒØ× Ò ÓÒ Ö Ð¹Ú ÐÙ ÓÙÒ ÓÒ× ×Ø ÒØ Ò× × ÐÐ ÓÙÒ ÓÒ× ×Ø Ò
Ý × Û ËÈ Ò Û Ø ÓÒ× ×Ø Òغ ÇÒ Ø ÓØ ÓÒ× ×Ø Òظ ÓÐÐÓÛ Ò × Ø Ü ÑÔÐ ¾º º Ä Ø ÐÐ Ó Ö ÓÒ×ØÖ Ò ¸Ø Ö Ø ÒØ× Ö Ü ÑÔÐ Ö Ú Ö Ð × Ø× ÓÒ×ØÖ Ò ÒØ× Ú Ö Ö Ð × Û Ø ÓÙÒ Ò ÒØ ÖÚ Ð ÓÒ× ×Ø Ò
Ý Ö ÓÙÒ Ò ÓÒ Ö Ð¹Ú ÐÙ ÓÒ× ×Ø ÒØ Ú ÖÝ ÒØ ÖÚ Ð Ú Ö ËÈ× Ø ÒØ ÖÚ Ð ÓÒ× ×Ø Òغ Ø Ð × × Ö ÓÙÒ ÒÓØ ÒØ ÖÚ Ð ÐÐÙ×ØÖ Ø × C : [0, 1] × [0, 1] × [0, 1] → {0, 1} Ø Ð Ò Ö ÓÒ×ØÖ ÒØ C(x) = 1 ⇔ 2x1 + 2x2 + 2x3 = 3.

Download PDF sample

Rated 4.21 of 5 – based on 13 votes