
Springer Tracts in Modern Physics
Volume 224

Managing Editor: G. Höhler, Karlsruhe

Editors: A. Fujimori, Chiba
J. Kühn, Karlsruhe
Th. Müller, Karlsruhe
F. Steiner, Ulm
J. Trümper, Garching
C. Varma, California
P. Wölfle, Karlsruhe

Starting with Volume 165, Springer Tracts in Modern Physics is part of the [SpringerLink] service.
For all customers with standing orders for Springer Tracts in Modern Physics we offer the full text
in electronic form via [SpringerLink] free of charge. Please contact your librarian who can receive
a password for free access to the full articles by registration at:

springerlink.com

If you do not have a standing order you can nevertheless browse online through the table of contents
of the volumes and the abstracts of each article and perform a full text search.

There you will also find more information about the series.



Springer Tracts in Modern Physics

Springer Tracts in Modern Physics provides comprehensive and critical reviews of topics of current in-
terest in physics. The following fields are emphasized: elementary particle physics, solid-state physics,
complex systems, and fundamental astrophysics.
Suitable reviews of other fields can also be accepted. The editors encourage prospective authors to cor-
respond with them in advance of submitting an article. For reviews of topics belonging to the above
mentioned fields, they should address the responsible editor, otherwise the managing editor.
See also springer.com

Managing Editor

Gerhard Höhler
Institut für Theoretische Teilchenphysik
Universität Karlsruhe
Postfach 69 80
76128 Karlsruhe, Germany
Phone: +49 (7 21) 6 08 33 75
Fax: +49 (7 21) 37 07 26
Email: gerhard.hoehler@physik.uni-karlsruhe.de
www-ttp.physik.uni-karlsruhe.de/

Elementary Particle Physics, Editors

Johann H. Kühn
Institut für Theoretische Teilchenphysik
Universität Karlsruhe
Postfach 69 80
76128 Karlsruhe, Germany
Phone: +49 (7 21) 6 08 33 72
Fax: +49 (7 21) 37 07 26
Email: johann.kuehn@physik.uni-karlsruhe.de
www-ttp.physik.uni-karlsruhe.de/∼jk

Thomas Müller
Institut für Experimentelle Kernphysik
Fakultät für Physik
Universität Karlsruhe
Postfach 69 80
76128 Karlsruhe, Germany
Phone: +49 (7 21) 6 08 35 24
Fax: +49 (7 21) 6 07 26 21
Email: thomas.muller@physik.uni-karlsruhe.de
www-ekp.physik.uni-karlsruhe.de

Fundamental Astrophysics, Editor

Joachim Trümper
Max-Planck-Institut für Extraterrestrische Physik
Postfach 13 12
85741 Garching, Germany
Phone: +49 (89) 30 00 35 59
Fax: +49 (89) 30 00 33 15
Email: jtrumper@mpe.mpg.de
www.mpe-garching.mpg.de/index.html

Solid-State Physics, Editors

Atsushi Fujimori
Editor for The Pacific Rim
Department of Complexity Science
and Engineering
University of Tokyo
Graduate School of Frontier Sciences
5-1-5 Kashiwanoha
Kashiwa, Chiba 277-8561, Japan
Email: fujimori@k.u-tokyo.ac.jp
http://wyvern.phys.s.u-tokyo.ac.jp/welcome_en.html

C. Varma
Editor for The Americas
Department of Physics
University of California
Riverside, CA 92521
Phone: +1 (951) 827-5331
Fax: +1 (951) 827-4529
Email: chandra.varma@ucr.edu
www.physics.ucr.edu

Peter Wölfle
Institut für Theorie der Kondensierten Materie
Universität Karlsruhe
Postfach 69 80
76128 Karlsruhe, Germany
Phone: +49 (7 21) 6 08 35 90
Fax: +49 (7 21) 69 81 50
Email: woelfle@tkm.physik.uni-karlsruhe.de
www-tkm.physik.uni-karlsruhe.de

Complex Systems, Editor

Frank Steiner
Abteilung Theoretische Physik
Universität Ulm
Albert-Einstein-Allee 11
89069 Ulm, Germany
Phone: +49 (7 31) 5 02 29 10
Fax: +49 (7 31) 5 02 29 24
Email: frank.steiner@uni-ulm.de
www.physik.uni-ulm.de/theo/qc/group.html



Joachim Ankerhold

Quantum Tunneling
in Complex Systems
The Semiclassical Approach

With 62 Figures

ABC



Joachim Ankerhold
Physikalisches Institut
Universität Freiburg
Hermann Herder Str. 3
79104 Freiburg, Germany
E-mail: ankerhold@physik.uni-freiburg.de

Library of Congress Control Number: 2006938410

Physics and Astronomy Classification Scheme (PACS):
03.65 Sq, 05.60.Gg, 05.40.-a, 74.50.+r, 82.20.Db

ISSN print edition: 0081-3869
ISSN electronic edition: 1615-0430
ISBN-10 3-540-68074-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-68074-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
c© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: by the authors using a Springer LATEX macro package
Cover production: WMXDesign GmbH, Heidelberg

Printed on acid-free paper SPIN: 10906101 56/techbooks 5 4 3 2 1 0



To E. and K. and E.



Preface

Tunneling is a genuine quantum effect, a direct consequence of the matter
wave structure of quantum mechanics. Recent progress in engineering and
manufacturing aggregates on the nanoscopic and mesoscopic scale have led
to fascinating developments in directly influencing and controlling quantum
properties in general, and tunneling in particular. In parallel, an exciting
exchange of experimental techniques and theoretical concepts from fields such
as atomic, molecular, and condensed matter physics has emerged. The aim of
this book is to provide a survey of one of the most powerful theoretical tools
to describe tunneling, namely, the semiclassical approximation, and to show
that tunneling phenomena are central issues in this fast rising interdisciplinary
field.

The literature about quantum tunneling is enormous, and that about semi-
classics as well. The intention here is to discuss tunneling from a semiclassical
perspective, which in turn means that this book does not address tunneling
in general nor the general methodology of the semiclassical approximation.
Tunneling probabilities for one dimensional anharmonic systems can be eval-
uated by means of semiclassical expansions whenever energy scales, on which
the barrier penetration occurs, are large compared to some intrinsic quantum
mechanical energy scales of the systems. This concept has been generalized to
tunneling events in presence of dissipative environments, where rate constants
characterize the time scale for transmission. For multi-dimensional systems,
particularly for those with non-regular phase space structures, or for time
dependent approaches to capture tunneling, however, general conditions are
hard to formulate and may depend on specific features of the problem un-
der consideration. In fact, in practical applications semiclassical calculations
are often more accurate than expected from general estimates, which may be
one reason for their widespread and successful use in physics and chemistry.
In situations such as dissipative tunneling through high barriers, numerically
exact treatments are either prohibitive or so demanding that semiclassical
methods are basically the only tools for a proper description. In other cases,
where exact results are available, semiclassical considerations often provide a
better understanding for our physical intuition and serve as starting points
for elegant approximate developments.



VIII Preface

Complex quantum systems which allow for manipulations are inevitably
embedded in some sort of surrounding. This can be either an external con-
trol field, static or time dependent, a small number of additional degrees of
freedom generating non-regular dynamics, or a dissipative background leading
to energy exchange and fluctuations. The tunneling degree of freedom itself
can be even a collective degree of freedom consisting of a macroscopically
large number of microscopic entities, which has led to fundamental questions
like e.g. if and if yes, to what extent quantum mechanical properties could
be realized on a macroscopic level. Phenomenologically, tunneling in these
complex systems displays a rich variety of facets depending on macroscopic
parameters such as temperature, spectral bath densities, driving amplitudes
and frequencies, magnetic and electric fields.

In this book theoretical results are applied to and illustrated by explicit
realizations ranging in length from the subatomic scale of a few fermi (fm)
to the mesoscopic scale of a few microns (µm), thus covering systems over
nine orders of magnitude and objects as diverse as nuclei, ensembles of atoms,
molecular structures, and superconducting circuits. Owing to my own scien-
tific background in condensed phase systems, these examples must reflect a
personal viewpoint and only in this sense can be understood as representative.
The same is true for the semiclassical approaches and formulations: I did not
attempt to give a comprehensive account so that some of them may deserve
a deeper presentation, others are addressed only briefly.

Science is a social event and so this book would not have been possible
without intensive collaborations and discussions with many colleagues from
different fields in physics and chemistry. Particularly, I benefited from and
enjoyed to work with H. Grabert, F. Grossmann, P. Hänggi, G.-L. Ingold,
P. Pechukas, E. Pollak, C. Rummel, D. Tannor, M. Thoss, and U. Weiss.
I am indebted to the Quantronics group at the CEA Saclay, particularly
D. Esteve, H. Pothier, C. Urbina, D. Vion, for wonderful collaborations and
thank G. Buntkowsky, D. Haviland, A. Lupascu, J. Pekola, and W. Wernsdor-
fer for their help in understanding experimental details and providing some of
the figures. I am grateful as well to my students M. Saltzer and M. Duckheim
for their important contributions, critical questions, and ideas.

Some results discussed in this book have been obtained during extended
stays and short time visits at other places: as a fellow of the Alexander von
Humboldt Foundation at the Columbia University, New York; as a Heisenberg
fellow of the German Science Foundation at the CEA Saclay, the Weizmann
Institute of Science, the Technical University of Helsinki, and the University
of Geneva. I have always enjoyed the warm hospitality of my host institutions.

Most importantly, I deeply thank my wife Evangelia and our children
Katerina and Elias for their never ending patience and embracing love.

Freiburg, Joachim Ankerhold
October 2006
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1

Introduction

A semiclassical description of tunneling in systems with complex dynamics
requires an arsenal of theoretical techniques adapted to the problem under
investigation. Conceptually, two types of processes are usually distinguished,
namely, coherent and incoherent tunneling. The former one appears in bi-
and multistable potentials and, more precisely, should be termed quantum
coherence. It originates from the coherent overlap of wave functions located
in individual domains, which are separated by energy or phase-space barriers.
The latter one describes the situation, where in the language of scattering the-
ory asymptotic states in the distant past do not overlap in the distant future
with those that have penetrated a barrier. Accordingly, incoherent tunnel-
ing is seen in scattering processes between two reservoirs and in the decay
of metastable states into a continuum. However, in presence of interaction
with environmental degrees of freedom coherent tunneling dynamics can be
destroyed leading to relaxation via incoherent decay as well.

1.1 Theoretical Concepts

The earliest approach to determine tunneling amplitudes is based on an ap-
proximate solution of the stationary Schrödinger equation in terms of an ex-
pansion in h̄ for the energy dependent wave function. Technically, this WKB
treatment necessitates a matching of semiclassical wave functions, which in
general is quite a cumbersome task. Hence, modern semiclassical expansions
are dominantly based on the path integral representation of quantum mechan-
ics, in particular, of the time evolution operator, of the statistical operator
for the thermal equilibrium, and, as a combination of both, of the nonequi-
librium density matrix. The path integral naturally operates with trajectories
which in a semiclassical approximation correspond to orbits minimizing the
action. A further advantage is that this formulation allows for the inclusion
of additional degrees of freedom, most importantly, of a thermal heat bath.
We will not explain details of the path integral formulation here, especially

Joachim Ankerhold: Quantum Tunneling in Complex Systems
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2 1 Introduction

their mathematical subtleties, and refer the reader to excellent books such
as [1, 2, 3, 4, 5, 6]. The same is true for the semiclassical expansion, which
has grown into a sub-field of theoretical physics, but is used in the sequel
only with respect to tunneling. More information is provided by the extensive
literature, e.g. in [7, 8, 9].

Tunneling, as quantum mechanics in general, has two perspectives: a time
independent one in the energy domain and a dynamical one in the time do-
main (cf. also Fig. 1.1). For all conservative systems a description in the
energy domain is feasible independent of whether they are pure or mixed
according to an energy dependent distribution. Hence, approaches to calcu-
late transmission probabilities (WKB) and energy averaged tunneling rates
(thermodynamic methods) have been developed starting from microcanoni-
cal or canonical formulations. However, in case of external time dependent
driving or dissipation a time dependent approach is necessary. Indeed, even
in cases of wave packets penetrating barriers at fixed energies reveals a dy-
namical semiclassical picture aspects of the tunneling event that cannot be
gained merely from transmission probabilities. In the last decade, intensive
research to develop proper semiclassical propagation schemes has provided
deeper insight into the failure of standard Gaussian semiclassics to capture
deep tunneling. Eventually, the time evolution for systems out of equilibrium

Fig. 1.1. Structure of this book.
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in terms of reduced density matrices, described in the context of dissipative
quantum systems, has turned out to be extremely challenging. A proper semi-
classical approximation is highly desired since the formally exact path integral
expressions can in general not be evaluated analytically and in the long time
domain, where tunneling happens to occur, not even numerically.

For systems coupled to a heat bath, quantum mechanical tunneling domi-
nates only at sufficiently low temperatures, while at high temperatures energy
barriers are surmounted via classical thermal activation. Theories for tunnel-
ing thus merge with rate theories developed originally for chemical systems
and indeed, many semiclassical concepts for tunneling have been derived in
the 1970s in the community of physical chemistry. Physics joined these efforts
essentially in the early 1980s, partially triggered by the experimental progress
to fabricate electrical devices on the mesoscopic scale. The latter ones allowed
for the first time to study tunneling processes under well controlled conditions
and gave rise to the most accurate verifications of theoretical rate expressions.
In this century experimentalists have been extending their technology to actu-
ally design, tailor and manipulate quantum matter on ever larger scales. En-
sembles of atoms reach the size of mesoscopic devices and mesoscopic devices
are used to implement artificial atoms. Theory is again the complementary
part in this exciting adventure.

However, the semiclassical methodology for tunneling processes is not com-
pletely developed yet, there still exist more or less “white patches”. Examples
include tunneling in systems with mixed phase space and tunneling through
multi-dimensional barriers, where substantial progress has not been achieved
so far. Some of the fundamental subtleties which one encounters are addressed
in this book. For a further reading on concepts for quantum tunneling we re-
fer to the literature, for instance: Tunneling in general is reviewed in [10];
dissipative quantum systems and applications to tunneling are presented in
[11, 12] and approaches for calculations of rate constants are outlined in [13].

1.2 Physical Systems

In this book we are primarily interested in complex systems, a notion which
certainly needs some clarification. Roughly speaking, we call a tunneling sys-
tem complex when its phenomenology exhibits qualitatively different aspects
of tunneling while sweeping through the space of external and/or internal pa-
rameters. Typically, there is some relation to the underlying physical realiza-
tion, which then is built up of more than one degree of freedom or influenced by
additional external and/or intrinsic forces. A prominent example is the tunnel-
ing of the superconducting phase difference in Josephson junctions, where this
phase is actually a collective coordinate of the superconducting condensates
and as such its dynamics affects a physical system with macroscopically many
degrees of freedom. Other examples of collective processes have been discov-
ered in fission events of nuclear matter, collapse of Bose-Einstein condensates,
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or tunneling of magnetization in molecular nanomagnets. As a direct conse-
quence, the interaction with residual degrees of freedom, e.g. electromagnetic
modes in a circuit, vibronic degrees of freedom in molecules, phonons in con-
densed phase, is inevitable. Barrier penetration in presence of dissipative en-
vironments includes changeovers from coherent to incoherent dynamics, from
thermal activation to deep tunneling, and even to localization. Another facet
of tunneling appears in two- or higher dimensional systems when the corre-
sponding classical dynamics is non-regular with chaotic phase space structures
leading to distributions of tunneling probabilities which may strongly oscil-
late as functions of energy. Complexity also arises due to the application of
external time dependent fields during the barrier penetration. The absorption
of photons typically influences transmission rates substantially leading e.g.
in case of decay from a metastable well to intrawell excitations and resonant
tunneling. A similar situation can be found for atoms in strong external laser
fields, which drives valence electrons out of the Coulomb-well and re-scatters
them when the phase of the field changes.

To illustrate this rich phenomenology, examples on length scales from nu-
clei to mesoscopic devices are discussed in this book. Specifically, we will
discuss fission of nuclear matter, collapse of cold atomic gases with attractive
interaction, nanomagnets in form of molecular complexes, rotational tunnel-
ing in dihydride-metal compounds, and macroscopic quantum phenomena in
Josephson junction devices including tunneling of quantum bits. To concen-
trate on the essential features and not to overload this presentation a deeper
analysis of the respective systems had to be excluded. More details are con-
tained in e.g. [14] for systems on the molecular level, in [15] for Macroscopic
Quantum Tunneling and in [16] for spin tunneling in nanomagnets; for the
semiclassical approximation of transport phenomena in mesoscopic physics
[17] provides a thorough overview.

1.3 Structure of the Book

The structure of the book closely follows the discussion of the theoretical
concepts above and is sketched in Fig. 1.1. In the next Chap. 2 some basic
results from the semiclassical theory are collected and the relevant notation
is introduced. The remaining Sections deal with tunneling of individual wave
packets on the one hand and with tunneling of ensembles described by density
matrices on the other hand. The wave packet aspect is discussed in Chap. 3 in
the energy domain, while in Chap. 4 dynamical approaches are outlined, par-
ticularly, for externally driven tunneling. In addition in Chap. 3 two powerful
thermodynamic approaches for rate calculations are introduced, the bounce
and the instanton method, however, without taking into account dissipation so
that they can be regarded as effective means to perform thermal averages over
tunneling rates of individual (quasi-)eigenstates. The basic structure of the
corresponding semiclassical procedures becomes thus very transparent. The
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generalization of these thermodynamic formulations to dissipative systems is
then given in Chap. 5. The nonequilibrium dynamics of density matrices is
the subject of Chaps. 6 and 7, where in the former one the temperature range
above the so-called crossover temperature is addressed, while in the latter one
a dynamical approach particularly for the low temperature range and covering
coherent as well as incoherent tunneling processes is presented. This in turn
allows to derive detailed conditions for the applicability of the thermodynamic
methods and reveals the intimate relation between dynamics, dissipation, and
tunneling. The book closes with some remarks about central issues, for which
the semiclassical theory of tunneling needs further developments in the future.
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2

Semiclassical Approximation

In the early days of quantum mechanics – before the concept of matter waves
had been introduced – the understanding of atomic spectra was based on
classical mechanics combined with conditions for discreteness. The latter ones
related the action of a classical orbit to multiples of h̄. This seed grew, shortly
after wave mechanics was cast into Schrödinger’s equation, into a semiclassical
scheme known today as WKB approximation [1, 2, 3], which allowed to obtain
the wave function in terms of classical trajectories. It was in the late 1960 only
that semiclassics turned into the focus of intensive scientific activities. Since
then semiclassical approximations, mathematically embedded in the context
of asymptotic series, have been derived for the time evolution operator, its
Fourier transform, the resolvent, and the statistical operator and successfully
applied in basically all fields of physics and physical chemistry. Semiclassics
offers a way to quantize also classically nonintegrable systems based on peri-
odic orbits and in the last years has provided powerful tools to capture the
quantum dynamics of even high dimensional systems. One appealing feature
of a semiclassical description is that it suggests an understanding of quantum
phenomena in terms of classical entities. However, one has to be cautious:
While such an interpretation may indeed be helpful in specific cases, in gen-
eral and particularly for tunneling processes, it makes no sense to speak about
the real existence of individual trajectories.

In this Chapter we collect some main results of semiclassical quantum
mechanics, which will then be used in the remainder of this book. For trans-
parency we restrict ourselves in many cases to one-dimensional systems, while
generalizations to higher dimensions are mostly straightforward and well-
described in the literature.

2.1 At the Very Beginning: The WKB Approach

Let us consider a quantum particle of mass M moving in one dimension under
the influence of a potential field V (q). The corresponding Hamiltonian reads
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Ĥ =
p̂2

2M
+ V (q̂) (2.1)

and its eigenbasis follows from the eigenstates of the time independent
Schrödinger equation Ĥ|ψ〉 = E|ψ〉. In position representation we try for
the solutions of

d2ψ(q)
dq2

+
2M

h̄2 [E − V (q)] ψ(q) = 0 (2.2)

an ansatz of the form

ψ(q) = exp
[

i
h̄

W (q)
]

(2.3)

with an exponent determined by

W ′(q)2 − ih̄W ′′(q) − p(q)2 = 0 . (2.4)

Here and in the sequel we use the abbreviation W ′ = dW/dq and further
introduced the classical momentum p(q) =

√
2M [E − V (q)]. The idea is to

solve (2.4) by assuming that the momentum p(q) shows only small variations
over length scales of the order of the de Broglie wave length λB(q) = 2πh̄/p(q).
One then expands in a power series of h̄ [4, 5, 6]

W = W0 − ih̄W1 − h̄2W2 − . . . (2.5)

and upon insertion into (2.4) and putting terms of equal powers in h̄ to
zero separately, one arrives at a set of iteratively coupled equations for the
Wk, k = 1, 2, 3, . . .. In lowest order (h̄0) one has W ′

0(q)
2 − p(q)2 = 0, which is

immediately solved by the classical short action

W0(q, q0) =
∫ q

q0

dq′ p(q′) , (2.6)

where q0 defines an arbitrary, but fixed reference point. Now, for W0 to
be the leading contribution of a perturbative expansion one has to impose
h̄|W ′′

0 (q)| � |W ′
0(q)

2| or equivalently

h̄

∣∣∣∣ p
′(q)

p(q)2

∣∣∣∣� 1 . (2.7)

This is the so-called WKB condition (Wentzel-Kramers-Brillouin) for matter
waves and the analog to the eikonal condition in geometrical optics [7]. Ap-
parently, the condition is violated at all points in the vicinity of p(q) = 0,
i.e. near all turning points of the corresponding classical orbit. These give
rise to caustics, a coalescence of classical orbits starting from the same initial
position but with different momenta. Before we address this phenomenon in
detail, we first proceed with the next order term in the expansion (2.5). From
W ′

1 = −W ′′
0 /(2W ′

0) one has W1(q) = − ln[p(q)]/2 so that by neglecting higher
order contributions the WKB wave function takes the form
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( )

Fig. 2.1. Barrier potential with ranges I, II, and III for different semiclassical
approximations, which must be matched according to the connection rules (2.9) and
(2.10) at the turning points ql and qr defined by E = V (q).

ψWKB(q) =
C+√
p(q)

eiW0(q,q0)/h̄ +
C−√
p(q)

e−iW0(q,q0)/h̄ (2.8)

with appropriate integration constants C±. Of course, this result can be sys-
tematically improved by taking into account even higher order terms in the
h̄-expansion (2.5).

The regions around caustics require special care. There is no reason why
the above expansion should not also hold in the range E < V (q), i.e. in a
range not accessible by a classical orbit, but sufficiently away from a turning
point E = V (q) (see e.g. Fig. 2.1). Accordingly, one puts p(q) → i|p(q)| so
that the oscillating wave function (2.8) develops exponentially decreasing and
increasing contributions, thus reflecting the appearance of quantum tunneling.
The matching between the WKB solutions in the classically allowed and the
classically forbidden ranges is done e.g. by circumventing the turning point in
the complex coordinate plane along a contour which ensures the validity of the
WKB condition [4]. The result are connection rules which read for a transition
from a classically accessible to a forbidden domain at a (left) turning point ql

C+√
p(q)

eiW0(q,ql)/h̄−iπ/4 +
C−√
p(q)

e−iW0(q,ql)/h̄+iπ/4 −→

C+√
|p(q)|

e−|W0(q,ql)|/h̄ , (2.9)

where in the first line q < ql and in the second one q > ql. In case of an
outgoing matter wave to the right of a (right) turning point qr, the transition
from the range under the barrier is determined by
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C+√
|p(q)|

e|W0(q,qr)|/h̄ → C+√
p(q)

eiW0(q,qr)/h̄+iπ/4 (2.10)

with q < qr on the right and q > qr one the left hand side.
These rules allow for the evaluation of energy dependent transmission

probabilities T (E) through one-dimensional barrier potentials. As a first ex-
ample, we consider a scattering barrier with asymptotically free states [4] as
depicted in Fig. 2.1. Then, one has an incoming and a reflected WKB-wave
on one side of the barrier (range I) and an outgoing WKB-wave on the other
side (range III). The amplitude t(E) of the latter is determined by connecting
these partial waves via a proper WKB solution in the classical forbidden range
(range II). This way one finds

T (E) ≡ |t(E)|2 = exp

[
− 2

h̄

∣∣∣∣∣
∫ qr(E)

ql(E)

dqp(q)

∣∣∣∣∣
]

, (2.11)

where the exponent contains twice the absolute of the short action W (ql, qr)
between the turning points. It is thus identical to the short action of a periodic
orbit at energy E in the inverted barrier potential.

In case of bounded one dimensional potentials with a single minimum, the
above connection rules give rise to a quantization scheme known as the WKB
or Bohr-Sommerfeld quantization, i.e.,

1
2πh̄

∮
dqp = n +

1
2

. (2.12)

Here the integral covers a full period of a classical orbit and n is a positive
integer. The additional term 1/2 on the right hand side accounts for the
zero point fluctuations. This term, a direct consequence of the breakdown
of the semiclassical approximation close to a turning point and associated
with the appearance of additional phases in (2.9) and (2.10), was absent in
the older version of this scheme. A multi-dimensional generalization of the
WKB rule was first found by Einstein, later discovered independently again
by Keller, and named EBK quantization (Einstein–Brillouin–Keller) [8, 9] in
the literature [10]. It reads for a d-dimensional system

1
2πh̄

∮
Ci

dqp = ni +
νi

4
, i = 1, . . . , d , (2.13)

where the Ci are d independent closed loops on a torus in d dimensions and νi

are the corresponding Maslov indices counting the number of conjugate points
along Ci.

From the above rules one derives quantized energy levels separated by
a gap of order h̄. However, in systems with classically degenerate ground
states, e.g. double well potentials, an exact diagonalization of the correspond-
ing Hamilton operator reveals that each such level consists actually of sub-
levels, the energies of which differ by terms exponentially small in h̄. This fine
structure due to quantum coherence between wells linked by barriers cannot
be gained within the WKB/EBK schemes.
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Uniform Approximation

There is an alternative way to glue together respective asymptotic WKB wave
functions in the vicinity of a turning point. The idea is to linearize the barrier
potential in a range around the turning point and to solve the corresponding
Schrödinger equation exactly [4, 5]. Suppose the turning point is located at
q = q0, one then writes V (q) ≈ V (q0) − F (q − q0). The corresponding energy
eigenfunctions are Airy-functions and by matching their asymptotics onto
semiclassical solutions (2.8) one determines the free coefficients and obtains a
uniform solution.

A similar strategy, namely to solve the Schrödinger equation for a reference
potential exactly, is also used to remove the failure of the WKB-transmission
probability (2.11) for energies close to the top of a smooth barrier potential [4,
5]. In this situation, left and right turning points, ql and qr, are not sufficiently
separated from each other (of order λB or less) so that the above procedure
based on the connection rules (2.9) and (2.10) does not apply. However, a
smooth barrier potential can be approximated around its top by an inverted
harmonic oscillator. The corresponding Schrödinger equation is again exactly
solvable in terms of Weber functions. The asymptotic form of these functions
is matched onto the asymptotic WKB wave functions, which eventually leads
to the uniform semiclassical transmission probability

Tuni(E) =
1

1 + exp[2W (E)/h̄]
(2.14)

with E = E(ql, qr). For energies sufficiently below the barrier top this ex-
pression reduces to (2.11), while it reproduces the exact result for a purely
parabolic barrier Vpb(q) = −Mω2q2/2 for energies near the top, where
Wpb(E) = πE/ω.

2.2 Real-time Propagator

The time dependent Schrödinger equation

ih̄
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉 (2.15)

can be formally integrated over a time period t − t′ to yield |ψ(t)〉 = Ĝ(t −
t′) |ψ(t′)〉, where

Ĝ(t) = exp
(
− i

h̄
Ĥt

)
(2.16)

denotes the quantum mechanical real-time propagator. Its knowledge is com-
pletely equivalent to solving the Schrödinger equation itself and leads to an
alternative formulation of quantum mechanics in terms of path integrals. First


