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Preface

Nobel Prize Winner Prof. Roald Hoffmann forewarding a recently published book
by Dronskowski [1] on computational chemistry of solid-state materials wrote that
one is unlikely to understand new materials with novel properties if one is wearing
purely chemical or physical blinkers. He prefers a coupled approach – a chemical
understanding of bonding merged with a deep physical description. The quantum
chemistry of solids can be considered as a realization of such a coupled approach.

It is traditional for quantum theory of molecular systems (molecular quantum
chemistry) to describe the properties of a many–atom system on the grounds of in-
teratomic interactions applying the linear combination of atomic orbitals (LCAO)
approximation in the electronic-structure calculations. The basis of the theory of the
electronic structure of solids is the periodicity of the crystalline potential and Bloch-
type one-electron states, in the majority of cases approximated by a linear combina-
tion of plane waves (LCPW). In a quantum chemistry of solids the LCAO approach
is extended to periodic systems and modified in such a way that the periodicity of the
potential is correctly taken into account, but the language traditional for chemistry
is used when the interatomic interaction is analyzed to explain the properties of the
crystalline solids. At first, the quantum chemistry of solids was considered simply as
the energy-band theory [2] or the theory of the chemical bond in tetrahedral semi-
conductors [3]. From the beginning of the 1970s the use of powerful computer codes
has become a common practice in molecular quantum chemistry to predict many
properties of molecules in the first-principles LCAO calculations. In the condensed-
matter studies the accurate description of the system at an atomic scale was much
less advanced [4].

During the last 10 years this gap between molecular quantum chemistry and the
theory of the crystalline electronic structure has become smaller. The concepts of
standard solid-state theory are now compatible with an atomic-scale description of
crystals. There are now a number of general-purpose computer codes allowing predic-
tion from the first-principles LCAO calculations of the properties of crystals. These
codes are listed in Appendix C. Nowadays, the quantum chemistry of solids can be
considered as the original field of solid-state theory that uses the methods of molec-
ular quantum chemistry and molecular models to describe the different properties of
solid materials including surface and point-defect modeling.
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Theory



1

Introduction

Prof. P. Fulde wrote in the preface to the first edition of his book [5]: Monographs
are required that emphasize the features common to quantum chemistry and solid-
state physics. The book by Fulde presented the problem of electron correlations in
molecules and solids in a unified form. The common feature of these fields is also
the use of the LCAO (linear combination of atomic orbitals) approximation: being
from the very beginning the fundamental principle of molecular quantum chemistry
LCAO only recently became the basis of the first-principles calculations for periodic
systems. The LCAO methods allow one to use wavefunction-based (Hartree–Fock),
density-based (DFT) and hybrid Hamiltonians for electronic- structure calculations
of crystals. Compared to the conventional plane-waves (PW) or muffin-tin orbitals
(MTO) approximations the LCAO approach has proven to be more flexible. To an-
alyze the local properties of the electronic structure the LCAO treatment may be
applied to both periodic- and molecular-cluster (nonperiodic) models of solid. Fur-
thermore, post-Hartree–Fock methods can be extended to periodic systems exhibiting
electron correlation. LCAO methods are able to avoid an artificial periodicity typi-
cally introduced in PW or MTO for a slab model of crystalline surfaces. The LCAO
approach is a natural way to extend to solid-state procedures of the chemical bonding
analysis developed for molecules. With recent advances in computing power LCAO
first-principles calculations are possible for systems containing many (hundreds) atoms
per unit cell. The LCAO results are comparable with the traditional PW or MTO
calculations in terms of accuracy and variety of accessible physical properties. More
than 30 years ago, it was well understood that the quantum theory of solids based
on LCAO enabled solid-state and surface chemists to follow the theoretically based
papers that appeared ( [2]). As an introduction to the theory of the chemical bond
in tetrahedral semiconductors the book [3](translation from the Russian edition of
1973) appeared. Later other books [6] and [7] appeared. These books brought to-
gether views on crystalline solids held by physicists and chemists. The important step
in the computational realization of the LCAO approach to periodic systems was made
by scientists from the Theoretical Chemistry Group of Turin University (C. Pisani,
R. Dovesi, C. Roetti) and the Daresbury Computation Science Department in Eng-
land (N.M. Harrison, V.R. Saunders) with their coworkers from different countries
who developed several versions of the CRYSTAL computer code–(88, 92, 95, 98, 03,
06) for the first- principles LCAO calculations of periodic systems. This code is now



4 1 Introduction

used by more than 200 scientific groups all over the world. Many results applying the
above code can be found in the book published about ten years ago by Springer: [4].
The publication includes review articles on the Hartree–Fock LCAO approach for
application to solids written by scientists actively working in this field. The book
by Fulde mentioned earlier takes the next step to bridge the gap between quantum
chemistry and solid-state theory by addressing the problem of electron correlations.
During the next ten years many new LCAO applications were developed for crys-
tals, including the hybrid Hartree–Fock–DFT method, full usage of the point and
translational symmetry of periodic system, new structure optimization procedures,
applications to research related to optical and magnetic properties, study of point
defects and surface phenomena, generation of the localized orbitals in crystals with
application to the correlation effects study. Also, LCAO allowed the development of
O(N) methods that are efficient for large-size many-atom periodic systems. Recently
published books including [8–11] may be considered as the high-quality modern text
books. The texts provide the necessary background for the existing approaches used in
the electronic-structure calculations of solids for students and researchers. Published
in the Springer Series in Solid State Sciences (vol. 129) a monograph [12] introduces
all the existing theoretical techniques in materials research (which is confirmed by the
subtitle of this book: From Ab initio to Monte Carlo Methods). This book is written
primarily for materials scientists and offers to materials scientists access to a whole
variety of existing approaches. However, to our best knowledge a comprehensive ac-
count of the main features and possibilities of LCAO methods for the first-principles
calculations of crystals is still lacking. We intend to fill this gap and suggest a book
reflecting the state of the art of LCAO methods with applications to the electronic-
structure theory of periodic systems. Our book is written not only for the solid-state
and surface physicists, but also for solid-state chemists and material scientists. Also,
we hope that graduate students (both physicists and chemists) will be able to use
it as an introduction to the symmetry of solids and for comparison of LCAO meth-
ods for solids and molecules. All readers will find the description of models used for
perfect and defective solids (the molecular-cluster, cyclic-cluster and supercell mod-
els, models of the single and repeating slabs for surfaces, the local properties of the
electronic-structure calculations in the theory of the chemical bonding in crystals).
We hope that the given examples of the first-principles LCAO calculations of dif-
ferent solid-state properties will illustrate the efficiency of LCAO methods and will
be useful for researchers in their own work. This book consists of two parts: theory
and applications. In the first part (theory) we give the basic theory underlying the
LCAO methods applied to periodic systems. The translation symmetry of solids and
its consequency is discussed in connection with a so-called cyclic (with periodical
boundary conditions) model of an infinite crystal. For chemists it allows clarification
of why the k-space introduction is necessary in the electronic-structure calculations
of solids. The site-symmetry approach is considered briefly (it is given in more detail
in [13]). The analysis of site symmetry in crystals is important for understanding the
connection between one-particle states (electron and phonon) in free atoms and in a
periodic solid. To make easier the practical LCAO calculations for specific crystalline
structures we explain how to use the data provided on the Internet sites for crystal
structures of inorganic crystals and irreducible representations of space groups. In the
next chapters of Part I we give the basics of Hartree–Fock and Kohn–Sham methods
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for crystals in the LCAO representation of crystalline orbitals. It allows the main dif-
ferences between the LCAO approach realization for molecules and periodic systems
to be seen. The hybrid Hartee–Fock–DFT methods were only recently extended from
molecules to solids, and their advantages are demonstrated by the LCAO results on
bandgap and atomic structure for crystals.

In the second part (applications) we discuss some recent applications of LCAO
methods to calculations of various crystalline properties. We consider, as is traditional
for such books the results of some recent band-structure calculations and also the
ways of local properties of electronic- structure description with the use of LCAO or
Wannier-type orbitals. This approach allows chemical bonds in periodic systems to
be analyzed, using the well-known concepts developed for molecules (atomic charge,
bond order, atomic covalency and total valency). The analysis of models used in
LCAO calculations for crystals with point defects and surfaces and illustrations of
their applications for actual systems demonstrate the efficiency of LCAO approach in
the solid-state theory. A brief discussion about the existing LCAO computer codes is
given in Appendix C.
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Space Groups and Crystalline Structures

2.1 Translation and Point Symmetry of Crystals

2.1.1 Symmetry of Molecules and Crystals: Similarities and Differences

Molecules consist of positively charged nuclei and negatively charged electrons moving
around them. If the translations and rotations of a molecule as a whole are excluded,
then the motion of the nuclei, except for some special cases, consists of small vi-
brations about their equilibrium positions. Orthogonal operations (rotations through
symmetry axes, reflections in symmetry planes and their combinations) that trans-
form the equilibrium configuration of the nuclei of a molecule into itself are called the
symmetry operations of the molecule. They form a group F of molecular symmetry.
Molecules represent systems from finite (sometimes very large) numbers of atoms, and
their symmetry is described by so-called point groups of symmetry. In a molecule it is
always possible to so choose the origin of coordinates that it remains fixed under all
operations of symmetry. All the symmetry elements (axes, planes, inversion center)
are supposed to intersect in the origin chosen. The point symmetry of a molecule is
defined by the symmetry of an arrangement of atoms forming it but the origin of
coordinates chosen is not necessarily occupied by an atom.

In modern computer codes for quantum-chemical calculations of molecules the
point group of symmetry is found automatically when the atomic coordinates are
given. In this case, the point group of symmetry is only used for the classification of
electronic states of a molecule, particularly for knowledge of the degeneracy of the
one-electron energy levels . To make this classification one needs to use tables of ir-
reducible representations of point groups. The latter are given both in books [13–15]
and on an Internet site [16] Calculation of the electronic structure of a crystal ( for
which a macroscopic sample contains 1023 atoms ) is practically impossible with-
out the knowledge of at least the translation symmetry group. The latter allows the
smallest possible set of atoms included in the so-called primitive unit cell to be consid-
ered. However, the classification of the crystalline electron and phonon states requires
knowledge of the full symmetry group of a crystal (space group). The structure of the
irreducible representations of the space groups is essentially more complicated and
use of existing tables [17] or the site [16] requires knowledge of at least the basics of
space-group theory.
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Discussions of the symmetry of molecules and crystals are often limited to the
indication that under operations of symmetry the configuration of the nuclei is trans-
formed to itself. The symmetry group is known when the coordinates of all atoms in
a molecule are given. Certainly, the symmetry of a system is defined by a geometrical
arrangement of atomic nuclei, but operations of symmetry translate all equivalent
points of space to each other. In equivalent points the properties of a molecule or a
crystal (electrostatic potential, electronic density, etc.) are all identical. It is neces-
sary to remember that the application of symmetry transformations means splitting
all space into systems of equivalent points irrespective of whether there are atoms
in these points or not. In both molecules and in crystals the symmetry group is the
set of transformations in three dimensional space that transforms any point of the
space into an equivalent point. The systems of equivalent points are called orbits of
points (This has nothing to do with the orbitals – the one-electron functions in many-
electron systems). In particular, the orbits of equivalent atoms in a molecule can be
defined as follows. Atoms in a molecule occupy the positions q with a certain site
symmetry described by some subgroups Fq of the full point symmetry group F of a
molecule. The central atom (if one exists) has a site-symmetry group Fq = F . Any
atom on the principal symmetry axis of a molecule with the symmetry groups Cn,
Cnv, Sn also has the full symmetry of the molecule (Fq = F ). Finally, Fq = F for any
atom lying in the symmetry plane of a molecule with the symmetry group F = Cs.
In other cases Fq is a subgroup of F and includes those elements R of point group F
that satisfy the condition Rq = q. Let F1 be a site-symmetry group of a point q1 in
the molecular space. This point may not be occupied by an atom. Let the symmetry
group of a molecule be decomposed into left cosets with respect to its site-symmetry
subgroup Fq:

F =
∑
j

RjFj, R1 = E, j=1,2,...,t (2.1)

The set of points qj = Rjq1 , j=1,2,...,t, forms an orbit of the point q1.
The point qj of the orbit has a site-symmetry group Fj=RjFR−1

j isomorphic to
F1. Thus, an orbit may be characterized by a site group F1, (or any other from the
set of groups Fj). The number of points in an orbit is equal to the index t=nF /nFj of
the group Fj in F.

If the elements Rj in (2.1) form a group P then the group F may be factorized
in the form F = PFj. The group P is called the permutation symmetry group of an
orbit with a site-symmetry group Fj (or orbital group).

In a molecule, all points of an orbit may be either occupied by atoms of the same
chemical element or vacant. Only the groups Cn, Cnv, Cs may be site-symmetry
groups in molecules. A molecule with a symmetry group F may have F as a site-
symmetry group only for one point of the space (for the central atom, for example).
For any point-symmetry group a list of possible orbits (and corresponding site groups)
can be given. In this list some groups may be repeated more than once. This occurs if
in F there are several isomorphic site-symmetry subgroups differing from each other
by the principal symmetry axes Cn, two-fold rotation axes U perpendicular to the
principal symmetry axis or reflection planes. All the atoms in a molecule may be
partitioned into orbits.


