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José A. Ferreira • Sı́lvia Barbeiro • Gonçalo Pena
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Preface

We are pleased to introduce the readers these proceedings containing a selection
of papers from invited lectures and contributed talks presented at the Workshop on
Fluid Dynamics in Porous Media that was held in Coimbra, Portugal, on September
12–14, 2011.

We believe that the Workshop on Fluid Dynamics in Porous Media was an
occasion of inspiration for all participants and helpful for strengthening the links
between researchers working in various modeling aspects in porous media.

This book includes research work of international recognized leaders in their
respective fields and presents advances in both theory and applications. The
contributions are devoted to mathematical modeling, numerical simulation, and
their applications. These proceedings provide the readers an overview on the latest
findings and new challenges in fluid dynamics in porous media, thus making them
appealing to a multidisciplinary audience, including mathematicians, engineers,
physicists, and computational scientists.

We express our gratitude to all the authors for their excellent contribution. We
also wish to thank the generous collaboration of anonymous reviewers. This book
could not have been successfully concluded without their assistance.

We gratefully acknowledge the financial support of UT Austin|Portugal Co-
Lab, the Centre of Mathematics of University of Coimbra, Fundação para a
Ciência e Tecnologia through European program COMPETE/FEDER, project
UTAustin/MAT/0066/2008 “Reaction-Diffusion in Porous Media,” and the Depart-
ment of Mathematics of University of Coimbra. We also thank Springer for agreeing
to publish this work, and in particular we express our appreciation for Meredith Rich
who assisted us in the edition.

Coimbra, Portugal José A. Ferreira
Coimbra, Portugal Sı́lvia Barbeiro
Coimbra, Portugal Gonçalo Pena
Austin, TX, USA Mary F. Wheeler
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F. Dorai Université de Tunis El-Manar, Tunis, Tunisia
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On the Coupling of Incompressible Stokes
or Navier–Stokes and Darcy Flows Through
Porous Media

V. Girault, G. Kanschat, and B. Rivière

Abstract In this chapter, we present the theoretical analysis of coupled incompress-
ible Navier–Stokes (or Stokes) flows and Darcy flows with the Beavers–Joseph–
Saffman interface condition. We discuss alternative interface and porous media
models. We review some finite element methods used by several authors in this
coupling and present numerical experiments.

1 Introduction

Mathematical and numerical modeling of coupled Navier–Stokes (or Stokes)
and Darcy flows is a topic of growing interest. Applications include the envi-
ronmental problem of groundwater contamination through rivers, the problem of
flows through vuggy or fractured porous media, the industrial manufacturing of
filters, and the biological modeling of the coupled circulatory system with the
surrounding tissue. The most widely used coupling model is based on either
the Beavers–Joseph or the simpler Beavers–Joseph–Saffman interface conditions.
The Beavers–Joseph condition [9], which is a Navier-type slip with a friction
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condition involving the interaction between the tangential velocities at the interface,
was derived experimentally in 1967. In 1971, it was simplified by Saffman [53] who,
observing that usually the flow in the pores is negligible with respect to the free
flow, replaced the difference in these two velocities by just the free flow velocity.
In 2000, via homogenization arguments, the Beavers–Joseph–Saffman model was
recovered by Jäger and Mikelić [36–38], Jäger et al. [39]. Since then the theoretical
and numerical coupling of Stokes and Darcy flows has been addressed by many
authors with a variety of settings ranging from a primal formulation in the Stokes
region and either an HHH(div) formulation or a primal formulation in the Darcy
region to a fully mixed formulation in both regions. Without being exhaustive, we
refer to [5, 6, 12, 22–29, 34, 42, 44, 47, 48, 51, 55]. For instance, well-posedness of
the coupled problem was established by Layton et al. in [44]; the authors used
continuous finite elements in the Stokes region, HHH(div) elements in the Darcy
region, and coupled both regions with a mortar. Rivière and Yotov in [51] and
Gatica et al. in [29] proposed a primal formulation in the Stokes region coupled
with a dual formulation in the Darcy region. Discacciati et al. proposed a primal
formulation in both regions; see for example [24]. In [28], Gatica et al. analyzed
a fully mixed formulation in both regions, introducing the deformation tensor in
the Stokes subdomain. Finally, Arbogast and Brunson in [6] use a finite element
formulation with continuity requirements changing between HHH1 and HHH(div) as
needed.

In contrast, there exists much less literature on the coupling of Navier–Stokes and
Darcy flows. The readers can refer to [8, 15, 16, 32]. And finally, there exists some
work on Stokes–Darcy flows coupled with the Beavers–Joseph interface condition.
Albeit linear, this last problem is harder to formulate rigorously because the Darcy
velocity lacks regularity at the interface; see the work of Cao et al. in [14].

Although this review focuses on the use of the Beavers–Joseph–Saffman condi-
tion to model coupled Navier–Stokes and Darcy flows, it also describes the approach
of various authors in coupling Darcy or Brinkman and Stokes flows that can be
easily extended to the nonlinear situation of the Navier–Stokes free flow.

2 Theoretical Analysis

2.1 Coupled Navier–Stokes and Darcy Systems

To simplify the discussion, we consider the three-dimensional problem; the two-
dimensional problem is treated in the same fashion.

Let Ω be a bounded, connected Lipschitz domain of R3, with boundary ∂Ω and
exterior unit normal vector nnn, partitioned into two nonoverlapping regions: a porous
region Ω2 and a free fluid region Ω1, both assumed to be Lipschitz continuous

Ω = Ω 1 ∪Ω 2.
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Ω1

Γ2D

Ω2
Γ2N Γ2N

Γ1Fig. 1 Problem setting

To simplify, we assume that each region is connected as in Fig. 1, but the
analysis presented in this first part easily extends to regions with several connected
components. Let Γ1 = ∂Ω1 ∩ ∂Ω denote the exterior boundary of the fluid region,
Γ2 = ∂Ω2 ∩∂Ω , the exterior boundary of the porous region, and Γ12 = ∂Ω1 ∩∂Ω2,
the interface between the two regions. Since we are in R

3, we also assume that the
surfaces Γ1, Γ2, and Γ12 have Lipschitz continuous boundaries.

In the fluid region Ω1, the constitutive equation for the Cauchy stress tensor TTT is

TTT (uuu1, p1) = 2μDDD(uuu1)− p1III, (1)

where uuu1 is the fluid velocity, DDD(uuu1) =
1
2

(
∇uuu1 +∇uuuT

1

)
is the symmetric gradient or

deformation tensor, p1 is the fluid pressure, III is the identity tensor, and μ > 0 is the
fluid viscosity. When substituted into the balance of linear momentum, after dividing
by the constant density (keeping the same notation for the kinematic viscosity and
pressure) and assuming that the flow has reached a steady state, we obtain the steady
Navier–Stokes system

− div(2μDDD(uuu1)− p1III)+ uuu1 ·∇uuu1 = fff 1 in Ω1, (2)

where fff 1 is a density of fluid body forces. The conservation of mass and constant
density give the incompressibility condition

divuuu1 = 0 in Ω1. (3)

In the porous region Ω2, we assume that the fluid flow is laminar; we neglect the
inertial effects in the fluid and only consider friction between the pores and the fluid.
By neglecting also gravity, for simplicity, this gives the Darcy law:

uuu2 =−KKK∇ p2, divuuu2 = f2 in Ω2, (4)

which in divergence form reads

− div(KKK∇ p2) = f2 in Ω2, (5)
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where uuu2 is the fluid velocity, p2 and the pore pressure, f2 is a source or sink term,
and KKK the permeability tensor divided by the viscosity, i.e.,

KKK =
K̂KK
μ
,

with K̂KK the intrinsic permeability. We assume that KKK is bounded, symmetric, and
uniformly definite. When the constant gravity g is included, the relation between
the velocity and pressure is expressed by

uuu2 =−KKK∇(p2 −ρgz),

where ρ > 0 is the constant density and z is the height.
For the interface equations, let nnn12 denote the unit normal to Γ12 pointing

in Ω2 and {ttt1
12, ttt

2
12} an orthonormal basis on the tangent plane to Γ12. The

incompressibility of the fluid implies continuity of the normal velocity :

uuu1 ·nnn12 = uuu2 ·nnn12 =−KKK∇ p2 ·nnn12. (6)

If Γ12 were a permeable boundary with no porous medium beyond, (6) could be
complemented by uuu1 · ttt j

12 = 0, j = 1,2. But at the interface between a fluid and a
porous medium, we need conditions on the traction vector TTTnnn. The first condition is
the balance of normal stresses:

p2 = (TTT nnn12) ·nnn12 = ((−2μDDD(uuu1)+ p1III)nnn12) ·nnn12. (7)

For the second condition, Beavers and Joseph [9] postulated by experiment in 1967,

(uuu1 − uuu2) · ttt j
12 =−G j (TTT nnn12) · ttt j

12 =−2μG j (DDD(uuu1)nnn12) · ttt j
12 , j = 1,2, (8)

where

G j =
1
α

√
(KKKttt j

12, ttt
j
12)

μ
, j = 1,2, (9)

and α > 0 is a dimensionless constant depending on the structure of the porous
medium. These are the Beavers–Joseph interface conditions. But Saffman [53],
observing that uuu2 is often negligible with respect to uuu1, proposed in 1971 to replace
(8) by the simpler Navier-type condition:

uuu1 · ttt j
12 =−2μG j (DDD(uuu1)nnn12) · ttt j

12 , j = 1,2. (10)

These are the Beavers–Joseph–Saffman interface conditions; see also the references
by Jäger and Mikelić [37, 38], for a derivation of these conditions by homogeni-
zation.



Coupling of Navier–Stokes and Darcy Flows 5

By eliminating the Darcy velocity and thus suppressing the index on uuu, we obtain
the following system of equations:

{−2μ divDDD(uuu)+ uuu ·∇uuu+∇ p1 = fff 1

divuuu = 0

}

in Ω1, (11)

−div
(
KKK∇ p2

)
= f2 in Ω2, (12)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

uuu ·nnn12 =−KKK∇ p2 ·nnn12

−2μ
2∑

j=1

G j(DDD(uuu)nnn12
) · ttt j

12 =

2∑

j=1

uuu · ttt j
12

(
(−2μDDD(uuu)+ p1III)nnn12

) ·nnn12 = p2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

on Γ12. (13)

Since we are mainly interested in the coupling, we choose simple exterior boundary
conditions; we split Γ2 into two parts Γ2D and Γ2N , as in Fig. 1, and we prescribe for
example:

uuu = 0 on Γ1,

p2 = 0 onΓ2D,

(KKK∇ p2) ·nnn2 = 0 on Γ2N .

(14)

Here we assume that |Γ2D|> 0; otherwise, the source f2 must satisfy the solvability
condition:

∫

Ω2

f2 dxxx = 0. (15)

Also, since we assume that KKK is bounded, symmetric, and uniformly positive
definite, we denote by λmin > 0 and λmax > 0 its extreme eigenvalues:

∀xxx ∈ Ω1,∀χχχ ∈ R
3 , λmin|χχχ|2 ≤ KKK(xxx)χχχ · χχχ ≤ λmax|χχχ|2, (16)

where | · | denotes the Euclidean vector norm.

2.2 Challenges

This coupled problem is challenging, even without the nonlinear convection
term. The first difficulty lies in the meaning to be given to the interface conditions
involving the traction vector TTT nnn when the interface is not a smooth curve. The next
difficulty arises from the nonlinear term: the interface conditions do not eliminate it
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from the energy balance. Finally, the numerical implementation of its discretization
is problematic because the system is usually large and has different time scales and
space scales in each subdomain, whence the necessity of decoupling algorithms.

2.3 Meaning of the Interface Conditions

Consider the following spaces for the data: fff 1 ∈ LLL2(Ω1), f2 ∈ L2(Ω2), and
assume for the moment that a solution (uuu, p1, p2) exists. It follows easily by
inspection that a reasonable choice of spaces for the solution is uuu ∈ HHH1(Ω1),
p1 ∈ L2(Ω1), and p2 ∈ H1(Ω2).

Let us start with the simpler situation of the Darcy equations in Ω2. The facts
that p2 belongs to H1(Ω2) and KKK is uniformly bounded imply that KKK∇ p2 belongs
to LLL2(Ω2). Then the fact that f2 belongs to L2(Ω2) and equation (12) imply that
KKK∇ p2 is in HHH(div;Ω2), where for any domain Ω ,

HHH(div;Ω) = {vvv ∈ LLL2(Ω) ; divvvv ∈ L2(Ω)}.

Therefore KKK∇ p2 · nnn is in H−1/2(∂Ω2), the normal trace space of HHH(div;Ω2); it is
the dual space of H1/2(∂Ω2), which in turn is the trace space of H1(Ω2); see [31].

In particular, (KKK∇ p2) · nnn12 is in
(
H1/2

00 (Γ12)
)′

, the dual space of H1/2
00 (Γ12), where

H1/2
00 (Γ12) is the trace space of functions v in H1(Ω2) that vanish on portions of Γ2

adjacent to Γ12; see [46]. Hence (KKK∇ p2) · nnn12 is well defined in a weak space. On
the other hand, since uuu is in HHH1(Ω1), then its trace is in HHH1/2(Γ12). Thus Sobolev’s
imbeddings imply that uuu ·nnn12 is in L4(Γ12); see [1]. Therefore the equation on Γ12

−KKK∇ p2 ·nnn12 = uuu ·nnn12

makes sense and implies that −KKK∇ p2 ·nnn12 belongs in fact to L4(Γ12).
Now we turn to the Navier–Stokes equations in Ω1. Since uuu belongs to HHH1(Ω1)

and p1 to L2(Ω1), then TTT (uuu, p1) is in LLL2(Ω1) and uuu · ∇uuu belongs to LLL3/2(Ω1).
Therefore it follows from (11) that TTT is in HHH2,3/2(div;Ω1), where

HHH2,3/2(div;Ω1) = {vvv ∈ LLL2(Ω1) ; divvvv ∈ L3/2(Ω1)}.

As the smooth functions are dense in HHH2,3/2(div;Ω1), then the following Green’s
formula holds:

∀ϕ ∈ H1(Ω1),(divvvv,ϕ)+ (vvv,∇ϕ) = 〈vvv ·nnn,ϕ〉∂Ω1
.

This implies that TTT nnn12 is well defined as an element of
(
HHH1/2

00 (Γ12)
)′

, but if Γ12 has
corners, the normal and tangent vectors have jumps, and the pairings 〈TTT nnn12,nnn12〉 and
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〈TTTnnn12, ttt
j
12〉 are not defined. This difficulty can be bypassed by prescribing the last

two conditions in (13) simultaneously as a single condition, instead of separately;
see [32]. Indeed, set

ggg = p2nnn12 +
2∑

j=1

1
G j

Ä
uuu · ttt j

12

ä
ttt j

12;

it is easy to check that ggg belongs to LLL4(Γ12). Since TTTnnn12 is well defined, albeit in a
weak space, we can prescribe on Γ12:

TTT nnn12 = ggg.

This condition makes sense and implies that TTT nnn12 is in fact in LLL4(Γ12). Then this
extra regularity allows to define the above pairings and we recover the last two
conditions in (13).

2.4 Variational Formulations

The boundary conditions (14) suggest that we take uuu and the velocity test
functions in

HHH1
Γ1
(Ω1) =

¶
vvv ∈ HHH1(Ω1) ; vvv|Γ1 = 0

©
,

and p2 and the pressure test functions in

H1
Γ2D

(Ω2) =
¶

q ∈ H1(Ω2) ; q|Γ2D = 0
©
.

In these spaces, the system (11)–(14) has the equivalent variational formulation:
Find uuu ∈ HHH1

Γ1
(Ω1), p1 ∈ L2(Ω1), and p2 ∈ H1

Γ2D
(Ω2), satisfying for all vvv ∈ HHH1

Γ1
(Ω1),

q1 ∈ L2(Ω1), and q2 ∈ H1
Γ2D

(Ω2):

2μ
(
DDD(uuu),DDD(vvv)

)
Ω1

+
(
uuu ·∇uuu,vvv

)
Ω1

− (
p1,divvvv

)
Ω1

+
(
KKK∇ p2,∇q2

)
Ω2

+
(

p2,vvv ·nnn12
)

Γ12
− (

q2,uuu ·nnn12
)

Γ12
+

2∑

j=1

( 1
G j uuu · ttt j

12,vvv · ttt j
12

)
Γ12

− (
divuuu,q1

)
Ω1

=
(

fff 1,vvv
)

Ω1
+
(

f2,q2
)

Ω2
. (17)

As usual, the pressure p1 can be eliminated by restricting the test functions to

VVV = {vvv ∈ HHH1
Γ1
(Ω1) ; ∀q1 ∈ L2(Ω1) , (divuuu,q1)Ω1 = 0},
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and we obtain a reduced equivalent problem: Find uuu ∈ VVV and p2 ∈ H1
Γ2D

(Ω2),

satisfying for all vvv ∈VVV and q2 ∈ H1
Γ2D

(Ω2):

2μ
(
DDD(uuu),DDD(vvv)

)
Ω1

+
(
uuu ·∇uuu,vvv

)
Ω1

+
(
KKK∇ p2,∇q2

)
Ω2

+
(

p2,vvv ·nnn12
)

Γ12
− (

q2,uuu ·nnn12
)

Γ12
+

2∑

j=1

( 1
G j uuu · ttt j

12,vvv · ttt j
12

)
Γ12

=
(

fff 1,vvv
)

Ω1
+
(

f2,q2
)

Ω2
. (18)

Equivalence follows easily from the inf-sup condition [31]: There exists β > 0
such that

∀q1 ∈ L2(Ω1) , sup
vvv∈HHH1

Γ1
(Ω1)

(
divvvv,q1

)
Ω1

|vvv|HHH1(Ω1)

≥ β‖q1‖L2(Ω1)
. (19)

2.5 “Energy” Equality and Analysis

The influence of the interface condition on the nonlinear term is clearly illustrated
by a straightforward “energy” analysis of problem (18). Assume (18) has a solution
(uuu, p2) and take vvv = uuu, q2 = p2. Then we readily obtain

2μ ‖DDD(uuu)‖2
LLL2(Ω1)

+
∥∥∥KKK1/2∇ p2

∥∥∥
2

LLL2(Ω2)
+

2∑

j=1

∥∥∥∥∥

Å
1

G j

ã1/2

uuu · ttt j
12

∥∥∥∥∥

2

L2(Γ12)

+
1
2

∫

Γ12

(uuu ·nnn12)|uuu|2 = ( fff 1,uuu)Ω1
+( f2, p2)Ω2

. (20)

The integrand (uuu · nnn12)|uuu|2 on Γ12 has no definite sign because divuuu = 0 in Ω1 and
uuu = 0 on Γ1 imply that uuu ·nnn12 changes sign on Γ12. But even in the presence of other
boundary conditions, one can expect exchanges of fluid at the interface. Therefore
in (20) we need to control this integral on the interface.

There are different approaches for treating this integral and establishing existence
of solutions. Considering that the difficulty is located on the interface, Badea et al.
in [8] reduce problem (18) to a nonlinear interface problem via a nonlinear Steklov–
Poincaré operator. Their main unknown is λ = uuu · nnn12 on Γ12, and they require an
extension operator

E : λ ∈ H1/2
00 (Γ12) �→ vvv ∈ HHH1(Ω1) satisfying vvv ·nnn12 = λ .
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Unfortunately, this extension is impossible as soon as Γ12 has corners, because in
this case nnn12 is not smooth enough to guarantee that vvv ·nnn12 belongs to H1/2(Γ12). In
other words, their approach does not extend to a rough boundary.

This limitation can be avoided by a direct argument (see Girault and Rivière
[32]) based on a Galerkin discretization of (18), a priori estimates for restricted
data, and Brouwer’s fixed point theorem. More precisely, we choose and truncate a
smooth basis of VVV ×L2(Ω2), say WWW m = Vect{(Φi,ϕi)1≤i≤m}, and we want to find
(uuum, pm) ∈WWW m solution of

2μ
(
DDD(uuum),DDD(Φk)

)
Ω1

+
(
uuum ·∇uuum,Φk

)
Ω1

+
(
KKK∇ pm,∇ϕk

)
Ω2

+
(

pm,Φk ·nnn12
)

Γ12
− (

ϕk,uuum ·nnn12
)

Γ12
+

2∑

j=1

( 1
G j uuum · ttt j

12,Φk · ttt j
12

)
Γ12

=
(

fff 1,Φk
)

Ω1
+
(

f2,ϕk
)

Ω2
, 1 ≤ k ≤ m. (21)

Clearly, any solution of (21) satisfies the energy equality (20). Hence the
assumptions of Brouwer’s fixed point theorem cannot be checked without restricting
the data. With that in mind, it can be readily shown that there exists a constant A of
the form

A =C1‖ fff 1‖LLL2(Ω1)
+

…
μ

λmin
C2‖ f2‖L2(Ω2)

,

with C1 and C2 depending only on the geometry of the domain, such that if

μ2 > C A , (22)

where also C only depends on the geometry of the domain, then (21) has at least
one solution uuum, pm satisfying

μ
∥∥DDD(uuum)

∥∥2
LLL2(Ω1)

+
∥∥KKK1/2∇ pm

∥∥2
LLL2(Ω2)

≤ A 2

μ
. (23)

In other words, there exist solutions of (21) for large viscosity or small forces, or
both. Furthermore, (22) and (23) imply that

∥∥DDD(uuum)
∥∥

LLL2(Ω1)
≤ A

μ
<

μ
C

and
∥∥KKK1/2∇ pm

∥∥
LLL2(Ω2)

≤ A√μ
<

μ3/2

C
.

By a standard argument, these bounds are sufficient to pass to the limit in (21) as m
tends to infinity. Therefore, provided (22) holds, (18) has at least one solution, and
this solution satisfies

∥∥DDD(uuu)
∥∥

LLL2(Ω1)
<

μ
C

and
∥∥KKK1/2∇ p

∥∥
LLL2(Ω2)

<
μ3/2

C
. (24)
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Finally, it is easy to prove that (18) has no other solution satisfying (24). Existence
of p1 such that uuu, p1, p2 solves (17) follows from the equivalence of these two
formulations.

Remark 2.1. In the case of coupled Stokes and Darcy equations with the same
interface conditions (6), (7), and (10), the argument is much simpler. Existence and
uniqueness of (uuu, p1, p2) satisfying (17) without the nonlinear term are obtained
unconditionally.

3 Discretization

There are several numerical methods that approximate the solution of the Stokes
version of (11)–(14), either in divergence form or not. Most have straightforward
extensions to the Navier–Stokes equations, although these extensions have not
always been proposed. We describe some of them in this section.

3.1 A Discontinuous Galerkin Method

This method has been studied mostly by Girault, Rivière, and Yotov in [32, 49,
51]. Since the analysis presented above applies to a rough interface, we can assume
that both Ω1 and Ω2 are polygons or polyhedra. This is a major simplification
because performing the numerical analysis of problem (11)–(14) in a region with
a curved interface raises very technical issues, unless the interface is flat, which is a
strong limitation on the geometry.

Let E h
i be a regular family (in the sense of Ciarlet [18]) of triangulations of Ωi

made of simplicial elements, i.e., there exists a constant γ > 0 independent of h,
such that

∀E ∈ E h
i ,

hE

ρE
= γE ≤ γ,

where hE is the diameter of E , ρE is the diameter of the ball inscribed in E , and
h is the maximum of hE . Hexahedral elements can also be used, but the nonlinear
transformation from the reference cell makes the analysis more technical. As we
work with totally discontinuous finite elements, we accept hanging nodes, but for
the sake of simplicity, we assume that the triangulations are conforming, and in
particular, we assume that the triangulations E h

i match on the interface. However,
this restriction can be easily relaxed.

The method presented here uses completely discontinuous symmetric interior
penalty (SIPG) or nonsymmetric interior penalty (NIPG) everywhere for the elliptic
terms; see [41, 50, 52]. This permits to prescribe weakly the essential boundary


